Annals of SBV

Register      Login

VOLUME 5 , ISSUE 1 ( Jan-Jun, 2016 ) > List of Articles

Genome editing tools and its potential applications in translational medicine- a brief overview.

Agieshkumar Balakrishna Pillai, S Elanthiraiyan

Citation Information : Pillai A B, Elanthiraiyan S. Genome editing tools and its potential applications in translational medicine- a brief overview.. 2016; 5 (1):14-18.

DOI: 10.5005/jp-journals-10085-5104

License: CC BY-NC 4.0

Published Online: 00-06-2016

Copyright Statement:  Copyright © 2016; Jaypee Brothers Medical Publishers (P) Ltd.


Abstract

Recent understandings in the genetic basis of diseases emphasize the need for potential therapeutic strategies. Latest molecular techniques such as RNA interference, gene therapy and gene editing that can modify nucleic acids within disease affected tissues can have great potential for treating genetic disorders. In this context, the present review summarizes the tools available for human gene editing and advances in research with reference to CRISPR/Cas9 based human genome editing. This review also discusses various ethical concerns associated with human gene editing.


PDF Share
  1. Krishan K, Kanchan T. Human genome editing and ethical considerations. Sci Eng Ethics. 2016; 22:597-9.
  2. Billings PR, Hubbard R, Newman SA. Human germline gene modification: a dissent. Lancet 1999;353:1873.5.
  3. Lanphier E, Urnov F, Haecker SE, Werner M, Smolenski J. Don't edit the human germ line. Nature. 2015; 519: 410-11.
  4. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol. 2001; 21:289-97.
  5. Vaishnaw AK, Gollob J, Gamba VC, Hutabarat R, Sah D, et al. A status report on RNAi therapeutics. Silence. 2010;1:14.
  6. Kay MA. State-of-the-art gene-based therapies: the road ahead. Nature Rev Genet. 2011;12:316-28.
  7. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nature Rev Genet. 2010;11:636-46.
  8. Scharenberg AM, Duchateau P, Smith J. Genome engineering with TAL-effector nucleases and alternative modular nuclease technologies. Curr Gene Ther. 2013;13:291-303.
  9. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR Cas9 for genome engineering. Cell. 2014;157:1262-78.
  10. Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: Prospects and challenges. Nat Med. 2015; 21: 121-31.
  11. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, et al. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 2014;370:901-10.
  12. Li H, Haurigot V, Doyon Y, Li T, Wong SY, et al. In vivo genome editing restores haemostasis in a mouse model of haemophilia. Nature. 2011;475:217-22.
  13. Yin H, Xue W, Chen S, Bogorad RL, Benedetti E, et al. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat. Biotechnol. 2014;32:551-3.
  14. Schwank G, Koo BK, Sasselli V, Dekkers JF, Heo I, et al. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell stem cell. 2013;13:653-8
  15. Ousterout DG, Pinera PP, Thakore PI, Kabadi AM, Brown MT. et al. Reading frame correction by targeted genome editing restores dystrophin expression in cells from Duchenne Muscular Dystrophy patients. Mol Ther. 2013;21:1718-30.
  16. Long C, McAnally R, Shelton JM, Mireault A, Duby R, et al. Prevention of muscular dystrophy in mice by CRISPR/Cas9-mediated editing of germline DNA. Science. 2014;345:1184- 8.
  17. Holt N, Wang J, Kim K, Friedmann G, Wang X et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 2010;28: 839-47.
  18. Perez EE, Wang J, Miller J, Jouvenot Y, Kim AK, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat. Biotechnol. 2008;26: 808-16.
  19. Ye L, Wang J, Beyer AI, Teque F, Cradick TJ, et al. Seamless modification of wild-type induced pluripotent stem cells to the natural CCR5Delta32 mutation confers resistance to HIV infection. Proc Natl Acad Sci U S A. 2014;111:9591-6
  20. Lin SR, Yang HC, Kuo YT, Liu CJ, Yang TY, et al. The CRISPR/Cas9 System facilitates clearance of the intrahepatic HBV templates In Vivo. Mol Ther Nucleic Acids. 2014;3:e186.
  21. Bloom K, Ely A, Mussolino C, Cathomen T, Arbuthnot P. Inactivation of hepatitis B virus replication in cultured cells and in vivo with engineered transcription activator-like effector nucleases. Mol Ther. 2013; 21:1889-97.
  22. Genovese P, Schiroli G, Escobar G, Tomaso T, Firrito C, et al. Targeted genome editing in human repopulating haematopoietic stem cells. Nature. 2014; 510:235-40.
  23. Ma N, Liao B, Zhang H, Wang L, Shan Y et al. Transcription activator-like effector nuclease (TALEN)-mediated gene correction in integration-free β-thalassemia induced pluripotent stem cells. J Bio Chem. 2013; 288:34671-79.
  24. Xie F, Ye L, Chang JC, Beyer A, Wang J, et al. Seamless gene correction of β-thalassemia mutations in patient-specific iPSCs using CRISPR/Cas9 and piggy Bac. Genome Res. 2014; 24:1526-33.
  25. Liang P, Xu Y, Zhang X, Ding C, Huang R, et al. CRISPR/Cas9-mediated gene editing in human tripronuclear zygotes. Protein Cell. 2015;6:363-72.
  26. Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea. Nature 2012; 482: 331-8.
  27. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337:816-21.
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.