Annals of SBV

Register      Login

VOLUME 9 , ISSUE 1 ( January-June, 2020 ) > List of Articles


Antidiabetic Activity of Red Marine Algae In Vitro: A Review

JV Sabarianandh, Vinayagam Subha, Kumarappan Manimekalai

Citation Information : Sabarianandh J, Subha V, Manimekalai K. Antidiabetic Activity of Red Marine Algae In Vitro: A Review. 2020; 9 (1):22-26.

DOI: 10.5005/jp-journals-10085-8117

License: CC BY-NC 4.0

Published Online: 17-10-2020

Copyright Statement:  Copyright © 2020; The Author(s).


The marine ecosystem is a prosperous source of biological and chemical diversity which has been explored in the finding of unique chemicals having potential for industrial improvement as pharmaceuticals, cosmetics, nutritional supplements. Marine organisms consist of important number of novel secondary metabolites with potent pharmacological properties have been discovered. Most of the macroalgae have rich source of carotenoids, proteins, oligosaccharides, fatty acids, antioxidants, vitamins, and minerals, which are useful for medical and pharmaceutical industries. Especially, red algae are involved in photosynthesis and it also contains carrageenan, which is used for food and medicinal products. Hence, this review article is a concise of the antidiabetic effect of red algae and its bioactive components assessed in vivo and in vitro studies.

  1. Gopal R, Vijaya Kumaran M, Ventatesan R, Kathiroli S. Marine organisms in Indian medicine and their future prospects. Nat Prod Rad 2008;7(2):139–145.
  2. Rajakumar R, Singh APY. Biochemical investigation and GC-MS analysis of Gracilaria edulis. World J Pharma Res 2017;6(7):1812–1820.
  3. Hill RA. Marine natural products. Ann Rep Prog Chem sect 2011;107:138–156. DOI: 10.1039/c1oc90008k.
  4. Kim JK, Yarisn C, Hwang EK, Park M, Kim Y. Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 2017;32(1):1–13. DOI: 10.4490/algae.2017.32.3.3.
  5. Chakarborty K, Lipton AP, Paulraj R, Chakraborty RD. Guaiane sesquiterpenes from seaweed Ulva fasciata delile and their antibacterial properties. Eur J Med Chem 2010;45(6):2237–2244. DOI: 10.1016/j.ejmech.2010.01.065.
  6. Chakarborth K, Lipton AP, Paulraj R, Vijayan KK. Anti-bacterial labdane diterpenoids of Ulva fasciata delile from the southwestern coast of Indian peninsula. Food Chem 2010;119(4):1399–1408. DOI: 10.1016/j.foodchem.2009.09.019.
  7. Kokabi M, Yousefzadi M, Alil Ahmadi A, Feghhi MA, Keshavarze M. Anti-oxidant activity of extracts of selected algae from the persian gulf. Iran J Pres Gulf 2013;4:45–50.
  8. Sanjeeva Kumar A, Nagarjuna S, Setty VK, Raju CH, Kashinath M. A comprehensive review on marine algae and their multidisciplinary activities. Int J Adv Pharma Biolog Sci 2011;1(2):44–50.
  9. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provision Report WHO Consult Diabet Med 1998;15(7):539–553. DOI: 10.1002/(SICI)1096-9136(199807)15:73.0.CO;2-S.
  10. Joshi SR, Parikh RM, Das AK. Insulin- history, biochemistry, physiology and pharmacology. J Assoc Physicia India 2007;55:19–25.
  11. Newshome P, Cruzat V, Arfuso F, Keane K. Nutrient regulation of insulin secretion and action. J Endocrinol 2014;221(3):R105–R120. DOI: 10.1530/JOE-13-0616.
  12. Sonken P, Sonken J. Insulin: understanding its action in health and disease. Br J Anaeth 2000;85(1):69–79. DOI: 10.1093/bja/85.1.69.
  13. Liu Y, Gao Z, Guo Q, Wang T, Lu C, Chen Y, etal. Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Mar Drugs 2014;12(3):1512–1529. DOI: 10.3390/md12031512.
  14. Soumya D, Srilatha B. Late stage complications of diabetes and insulin resistance. J Diabet Metabol 2011;2:1–7.
  15. Arumugam G, Manjula P, Paari N. A review: antidiabetic medicinal plants used for diabetes mellitus. J Acute Dis 2013(3):196–200. DOI: 10.1016/S2221-6189(13)60126-2.
  16. Vinoth Kumar R, Murugesan S, Shettu N. Anti-diabetic potential of marine red alga Champia Parvula (C. agardh) by inhibiting key metabolic enzymes. World J Pharmaceut Res 2017;6(10):1466–1474.
  17. Murugesan S, Bhuvaneswari S, Sivamurugan V. Evaluation of in vitro antidiabetic activity of red seaweed Portieria hornemannii (Lyngbye) (sliva) and Spyridia fusiformis (wulfen). World J Pharmaceut Sci 2016;4(6):415–419.
  18. Nwosu F, Morris J, Lund VA, Stewart D, Ross HA, McDougall GJ. Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 2011;126(3):1006–1012. DOI: 10.1016/j.foodchem.2010.11.111.
  19. Osman NAK, Siam AA, EI-manawy IM, Jeon YJ. Anti-microbial and anti-diabetic activity of six seaweeds collected from red sea, Egypt. The egyptian society For. Environment Sci 2019;19(1):55–60.
  20. Sanger G, Rarung LK, Damongilala LJ, Kaseger BE, Montolaluc LADY. Phytochemical constituents and anti-diabetic activity of edible marine red seaweed(Halymenia durvilae). IOP Conf. Series. Earth Environment 2019;278:1–8.
  21. Kim KV, Nam KA, Kuriharn H, Kim SM. Potent α-glucosidase inhibitors purified from the red algae Grateloupia elliptica. Phytochemistry 2008;69(16):2820–2825. DOI: 10.1016/j.phytochem.2008.09.007.
  22. Kurihara H, Mithani T, Kawabata J, Takahashi K. Inhibitory potencies of bromophenols rhodomelaceae algae against α-glucosidase activity. Fisheries sciences 1999;65(2):300–303. DOI: 10.2331/fishsci.65.300.
  23. Kim KY, Nguyen TH, Kurihara H, Kim SM. α-glucosidase inhibitory activity of bromophenol purified from the Red alga Polyopes lancifolia. J Food Sci 2010;75(5):145–150. DOI: 10.1111/j.1750-3841.2010.01629.x.
  24. Kurihara H, Mithani T, Kawabata J, Takahashi K. Two new bromophenols from the red alga Odonthalia corymbifera. J Nat Prod 1999;62(6):882–884. DOI: 10.1021/np980324p.
  25. Harnedy DA, Fitzgerald RJ. In vitro assessment of the cardio-protective, anti-diabetic and anti-oxidant potential of Palmaria palamata protein hydrolysates. J Appl Phycol 2013;25(6):1793–1803. DOI: 10.1007/s10811-013-0017-4.
  26. Wang W, Okada Y, Shi H, Wang Y, Okuyama T. Structures and aldose reductase inhibitory effects of bromophenols from the red algae Symphocladia latiuscula. J Nat Prod 2005;68(4):620–622. DOI: 10.1021/np040199j.
  27. Nguyen T, Nguyen T, Nguyen V, Nguyen TP, Tran TA, Do A, et al. Antidiabetic and antioxidant activities of red seaweed Laurencia dendroidea. Asian Pac J Trop Biomed 2019;9(12):501–509. DOI: 10.4103/2221-1691.271723.
  28. Liu X, Li X, Gao L, Cui C, Li C, Li J, et al. Extraction and PtP1B inhibitory activity of bromophenols from the marine red alga symphyocladia latiuscula. Chin J Oceanol Limnol 2011;29(3):686–690. DOI: 10.1007/s00343-011-0136-1.
  29. Shi D, Feng X, He J, Li J, Fan X, Han L. Inhibition of bromophenols against PTP1B and anti-hyperglycaemic effect of Rhodomela confervoides extracts in diabetic rats. Chin Sci Bull 2008;53:2476–2479.
  30. Shi D, Guo S, Jiang B, Guo C, Wang T, Zhang L, et al. HPN, a synthetic analogue of bromophenol from red alga Rhodomela confervoides: synthesis and anti-diabetic effects in C57BL/KSJ-db/db mice. Mar Drugs 2013;11(2):350–362. DOI: 10.3390/md11020350.
  31. Qin J, Su H, Zhang Y, Gao J, Zhu L, Wu X, et al. Highly brominated metabolites from marine red alga Laurencia similis inhibit protein tyrosine phosphatase1B. Biorogan Med Chem Lett 2010;20(23): 7152–7154. DOI: 10.1016/j.bmcl.2010.08.144.
  32. Liu Q, Xu H, Zhang T, Fan X, Han I. Huaxul Tongbao. Mar Nat prod 2005;25:35–94.
  33. Rayapu L, Makkar F, Anandan SH, Maneesh A, Charkraborthy K, Yalluru L. Proctective role of marine marcoalgae extracts against STZ induced diabetic rats. J Coast Life Med 2017;5(12):521–530. DOI: 10.12980/jclm.5.2017J7-153.
  34. Pitozzi V, Glovannelli L, Bardini G, Rotella CM, Dolara P. Oxidative DNA damage in peripheral blood cells in type-2 diabetes mellitus: Higher vulnerability of polymorphonuclear Leutocytes. Mutat Res 2003;529(1-2):129–133. DOI: 10.1016/s0027-5107(03)00114-3.
  35. Ambreen AK, Hira A, Tariq R, Sultana V, Ara J. Evaluation of biochemical component and anti-microbial activity of some seaweeds occurring at Karachi coast. Pak J Bot 2012;44:1799–1803.
  36. Etreberria U, De la Garza AL, Campion J, Martinez JA, Milagro FI. Anti-diabetic effects of natural plant extracts via inhibition of carbohydrates hydrolysis enzymes with emphasis on pancreatic α-amylase. Expert Opin Ther Targets 2012;16(3):269–297. DOI: 10.1517/14728222.2012.664134.
  37. Mamun-or-Rashid ANM, Shamim Hossain MD, Hassan N, Dash BK, Ashrafuzzaman Sapon MD, Sen MK. A review on medicinal plants with antidiabetic activity. J Pharmacog Phytochem 2014;3(4): 149–159.
  38. Idsoe O, Guther T, Willeox R, Deweck AL. Nature and extent of penicillin side reaction with particular reference to fatalities from anaphylactic shock. Bull Wltto 1968;38:150–158.
  39. Siddhanta AK, Mody KH, Ramavat BK, Chauchan VD, Garg HS, Goel AK, et al. Bioactivity of marine organisms: part VIII-screening of some marine flora of western coast of India. India J Exp Bio 1997;36(6): 638–643.
  40. Mohammed FA, Syed MK, Syed SG, Syeda SM, Shaik RA, Shai MA, et al. Antidiaetic activity of Vinca rosea extracts in alloxan-induced diabetic rats. Intl J of Endocrin 2010. 1–6.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.