Annals of SBV

Register      Login

VOLUME 5 , ISSUE 1 ( Jan-Jun, 2016 ) > List of Articles

Glioblastoma Multiforme Metabolism: Fuel to the Flame

Preethi Sridharan

Keywords : Glioblastoma multiforme, Glycolysis, Glutamine metabolism, Lipid metabolism, Pentose phosphate pathway

Citation Information : Sridharan P. Glioblastoma Multiforme Metabolism: Fuel to the Flame. 2016; 5 (1):57-60.

DOI: 10.5005/jp-journals-10085-5112

License: CC BY-NC 4.0

Published Online: 01-02-2020

Copyright Statement:  Copyright © 2016; The Author(s).


Abstract

Glioblastoma Multiforme (GBM) is an aggressive, lethal brain tumor. Cellular metabolism is the major process affected during tumorigenesis. It is recently revealed that oncogenic signaling pathways are unswervingly involved in metabolic reprogramming of tumors. In GBM, metabolic pathways are reprogrammed and the underlying mechanisms causing these changes are yet to be unraveled. Interestingly, the pentose phosphate pathway in GBM shows differential association with glycolysis. This review discusses about the key metabolic enzymes and their association with several pathways in GBM highlighting the potential therapeutic targets.


PDF Share
  1. Ramirez YP, Weatherbee JL, Wheelhouse RT, Ross AH. Glioblastoma multiforme therapy and mechanisms of resistance. Pharmaceuticals (Basel). 2013; 6:1475-506.
  2. Ru P, Williams TM, Chakravarti A, Guo D. Tumor metabolism of malignant gliomas. Cancers (Basel). 2013; 5:1469-84.
  3. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927; 8:519-30.
  4. Parliament MB, Franko AJ, Allalunis-Turner MJ, Mielke BW, Santos CL, et al. Anomalous patterns of nitroimidazole binding adjacent to necrosis in human glioma xenografts: possible role of decreased oxygen consumption. Br J Cancer. 1997; 75:311-8.
  5. Franko AJ, Parliament MB, Allalunis-Turner MJ, Wolokoff BG. Variable presence of hypoxia in M006 human glioma spheroids and in spheroids and xenografts of clonally derived sublines. Br J Cancer. 1998; 78:1261-8.
  6. Allalunis-Turner MJ, Franko AJ, Parliament MB. Modulation of oxygen consumption rate and vascular endothelial growth factor mRNA expression in human malignant glioma cells by hypoxia. Br J Cancer. 1999; 80:104-9.
  7. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007; 104:19345-50.
  8. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci U S A. 2008; 105:18782-7.
  9. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med. 2011; 208:313-26.
  10. Agnihotri S, Wolf A, Munoz DM, Smith CJ, Gajadhar A, et al. A GATA4-regulated tumor suppressor network represses formation of malignant human astrocytomas. J Exp Med. 2011; 208:689-702.
  11. Mazurek S, Boschek CB, Hugo F, Eigenbrodt E. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol. 2005;15:300-8.
  12. Yang W, Zheng Y, Xia Y, Ji H, Chen X, et al. ERK1/2-dependent phosphorylation and nuclear translocation of PKM2 promotes the Warburg effect. Nat Cell Biol. 2012; 14:1295-304.
  13. Yang W, Xia Y, Ji H, Zheng Y, Liang J, et al. Nuclear PKM2 regulates β-catenin transactivation upon EGFR activation. Nature. 2011; 480:118-22.
  14. Yang W, Xia Y, Cao Y, Zheng Y, Bu W, et al. EGFR-induced and PKCå monoubiquitylation-dependent NF-êB activation upregulates PKM2 expression and promotes tumorigenesis. Mol Cell. 2012; 48:771-84.
  15. Mukherjee J, Phillips JJ, Zheng S, Wiencke J, Ronen SM, et al. Pyruvate kinase M2 expression, but not pyruvate kinase activity, is up-regulated in a grade-specific manner in human glioma. PLoS One. 2013;8:e57610.
  16. Morfouace M, Lalier L, Oliver L, Cheray M, Pecqueur C et al. Control of glioma cell death and differentiation by PKM2-Oct4 interaction. Cell Death Dis. 2014; 5:e1036.
  17. Koh J, Cho H, Kim H, Kim SI, Yun S, et al. IDH2 mutation in gliomas including novel mutation. Neuropathology. 2015; 35:236-44.
  18. Tanaka K, Sasayama T, Irino Y, Takata K, Nagashima H, et al. Compensatory glutamine metabolism promotes glioblastoma resistance to mTOR inhibitor treatment. J Clin Invest. 2015; 125:1591-602.
  19. Ohka F, Ito M, Ranjit M, Senga T, Motomura A, et al. Quantitative metabolome analysis profiles activation of glutaminolysis in glioma with IDH1 mutation. Tumour Biol. 2014; 35:5911-20.
  20. Kallenberg K, Bock HC, Helms G, Jung K, Wrede A, et al. Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. Radiology. 2009; 253:805-12.
  21. Rosati A, Marconi S, Pollo B, Tomassini A, Lovato L, et al. Epilepsy in glioblastoma multiforme: correlation with glutamine synthetase levels. J Neurooncol. 2009; 93:319-24.
  22. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A. 2007; 104:19345-50.
  23. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A. 2011; 108:8674-9.
  24. Sun P, Xia S, Lal B, Shi X, Yang KS, et al. Lipid metabolism enzyme ACSVL3 supports glioblastoma stem cell maintenance and tumorigenicity. BMC Cancer. 2014; 14:401.
  25. Guo D, Prins RM, Dang J, Kuga D, Iwanami A, et al. EGFR signaling through an Akt-SREBP-1-dependent, rapamycin-resistant pathway sensitizes glioblastomas to antilipogenic therapy. Sci Signal. 2009; 2:ra82.
  26. Guo D, Reinitz F, Youssef M, Hong C, Nathanson D, et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 2011; 1:442-56.
  27. Loreck DJ, Galarraga J, Van der Feen J, Phang JM, Smith BH, et al. Regulation of the pentose phosphate pathway in human astrocytes and gliomas. Metab Brain Dis. 1987;2:31-46.
  28. Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, et al. Glycolysis and the pentose phosphate pathway are differentially associated with the dichotomous regulation of glioblastoma cell migration versus proliferation. Neuro Oncol. 2016 Feb 24. pii: now024. [Epub ahead of print]
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.