microRNAs, small non-coding RNAs, have recently emerged as powerful regulators in a variety of cellular processes especially important roles in disease and tissue remodeling. Apart from involvement in a variety of biological processes, microRNAs were early recognized for their potential use as biomarkers in disease diagnostics and prognosis. Currently, there are number of microRNAs helping clinicians to determine the origins of cancer in disseminated tumors. The development of microRNA therapeutics has proved more challenging mainly due to delivery issues. This review focuses on the potential role of as clinical diagnostic and prognostic biomarkers. In addition, it highlights the microRNA profiling techniques, thereby leading to the advance opportunities to safely pursue microRNA as therapeutic modalities.
miRBase Sequence Database. Available online: http://microrna.sanger.ac.uk/sequences (accessed on 23 May 2014).
Kozomara A, Griffiths-Jones S. miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011; 39:D152.57.
Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC et al. A uniform system for microRNA annotation. RNA. 2003; 9:277.9.
Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993; 75:855.62.
Lee RC, Feinbaum RL, and Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75:843.54.
Griffiths-Jones S, Saini HK, van Dongen S, Enright AH. miRBase: tools for microRNA genomics. Nucleic Acids Res. 2008; 36:D154.8.
Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126.39.
Baskerville S, Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11:241.7.
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129:1401.14.
Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl Acad Sci USA. 2007; 104:17719.24.
Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13:1097.101.
Khvorova A, Reynolds A, Jayasena SD. Functional siRNAs and miRNAs exhibit strand bias. Cell. 2003; 115:209.16.
Cheloufi S, Dos Santos CO, Chong MM, Hannon GJ. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature. 2010; 465:584.9.
Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature. 2005; 436:214-20.
Li X. MiR-375, a microRNA related to diabetes. Gene. 2014; 533:1-4.
Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000; 343:1910-6.
Mishra PJ. MicroRNAs as promising biomarkers in cancer diagnostics. Biomark Res. 2014; 2:19.
Mishra PJ, Merlino G. MicroRNA reexpression as differentiation therapy in cancer. J Clin Invest. 2009; 119:2119.23.
Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009; 10:459.66.
Hua D, Mo F, Ding D, Li L, Han X et al. A catalogue of glioblastoma and brain MicroRNAs identified by deep sequencing. OMICS. 2012; 16:690-9.
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449:682.8
Ma L, Young J, Prabhala H, Pan E, Mestdagh P, et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol. 2010; 12:247-56.
Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, et al. miR-378(?) mediates metabolic shift in breast cancer cells via the PGC-1β/ERRγ transcriptional pathway. Cell Metab. 2010; 12:352-61.
Lowery AJ, Miller N, McNeill RE, Kerin MJ. MicroRNAs as prognostic indicators and therapeutic targets: potential effect on breast cancer management. Clin Cancer Res. 2008; 14:360-5.
Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 2006; 9:435-43.
Ju J, Jiang J, Fesler A. miRNA: the new frontier in cancer medicine. Future Med Chem. 2013; 5:983-5.
Song B, Wang Y, Titmus MA, Botchkina G, Formentini A et al. Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer. 2010; 9:96.
Karaayvaz M, Pal T, Song B, Zhang C, Georgakopoulos P, et al. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011; 10:340-7.
Zhai H, Karaayvaz M, Dong P, Sakuragi N, Ju J. Prognostic significance of miR-194 in endometrial cancer. Biomark Res. 2013; 1:12.
Zhai H, Song B, Xu X, Zhu W, Ju J. Inhibition of autophagy and tumor growth in colon cancer by miR-502. Oncogene. 2013; 32: 1570-9.
Lynn FC, Skewes-Cox P, Kosaka Y, McManus MT, Harfe BD, et al. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes. 2007; 56: 2938-45.
Poy MN, Hausser J, Trajkovski M, Braun M, Collins S, et al. miR-375 maintains normal pancreatic alpha- and beta-cell mass Proc Natl Acad Sci USA. 2009; 106: 5813-8.
Tang X, Muniappan L, Tang G, Ozcan S. Identification of glucose-regulated miRNAs from pancreatic beta cells reveals a role for miR-30d in insulin transcription. RNA. 2009; 15: 287-93.
Mi QS, He HZ, Dong Z, Isales C, Zhou L. MicroRNA deficiency in pancreatic islet cells exacerbates streptozotocin-induced murine autoimmune diabetes Cell Cycle. 2010; 9: 3127-9.
Ruan Q, Wang T, Kameswaran V, Wei Q, Johnson DS, et al. The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death Proc Natl Acad Sci USA. 2011; 108: 12030-5.
Xu G, Chen J, Jing G, Shalev A. Thioredoxin-interacting protein regulates insulin transcription through microRNA-204. Nat Med. 2013; 19: 1141-6.
Ling HY, Hu B, Hu XB, Zhong J, Feng SD, et al. MiRNA-21 reverses high glucose and high insulin induced insulin resistance in 3T3-L1 adipocytes through targeting phosphatase and tensin homologue. Exp Clin Endocrinol Diabetes. 2012; 120:553-9.
Chen YH, Heneidi S, Lee JM, Layman LC, Stepp DW, et al. miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes. 2013; 62: 2278-86.
Frost RJ, Olson EN. Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs. Proc Natl Acad Sci USA. 2011; 108:21075-80.
Zampetaki A, Kiechl S, Drozdov I, Willeit P, Mayr U, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010; 107: 810-17.
Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, et al. Comparing the MicroRNA Spectrum between Serum and Plasma. PLoS One. 2012; 7:e41561.
Liang Y, Ridzon D, Wong L, Chen C. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics. 2007; 8:166.
Long JM, Lahiri DK. MicroRNA-101 downregulates Alzheimer's amyloid-beta precursor protein levels in human cell cultures and is differentially expressed. Biochem Biophys Res Commun. 2010; 404: 889-95.
Geekiyanage H, Jicha GA, Nelson PT, Chan C. Blood serum miRNA: non-invasive biomarkers for Alzheimer's disease. Exp Neurol. 2011; 235: 491-6.
Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, et al. A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol. 2013; 14:R78.
Lugli G, Cohen AM, Bennett DA, Shah RC, Fields CJ et al. Plasma Exosomal miRNAs in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers. PLoS One. 2015; 10:e0139233.
Williams NM. Molecular mechanisms in 22q11 deletion syndrome. Schizophr Bull. 2011; 37:882-9.
Earls LR, Fricke RG, Yu J, Berry RB, Baldwin LT, et al. Age-dependent microRNA control of synaptic plasticity in 22q11 deletion syndrome and schizophrenia. J Neurosci. 2012; 32: 14132-44.
Gardiner E, Beveridge NJ, Wu JQ, Carr V, Scott RJ, et al. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry. 2012; 17:827-40.
Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, et al. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011; 6:e21635.
Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012; 13:358-69.
Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, et al. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Leg Med. 2010; 124:217-26.
Jeyaseelan K, Lim KY. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke. 2008; 39:959-66.
Tanaka M, Oikawa K. Down-regulation of miR-92 in human plasma is a novel marker for acute leukemia patients. PLoS One. 2009; 4:e5532.
Wang K, Zhang S. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci USA. 2009; 106: 4402-07.
Wang GK, Zhu JQ. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010; 31:659-66.
Tijsen AJ, Creemers EE. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010; 106: 1035-9.
Igaz I, Szõnyi M, Varga P, Topa L. Potential relevance of microRNAs in the diagnostics of inflammatory bowel diseases. Orv Hetil. 2014; 155: 487-91.
Hoekstra M, van der Lans CA, Halvorsen B, Gullestad L, Kuiper J, et al. The peripheral blood mononuclear cell microRNA signature of coronary artery disease. Biochem Biophys Res Commun 2010; 394:792-7.
Xu CF, Yu CH, Li YM. Regulation of hepatic microRNA expression in response to ischemic preconditioning following ischemia/reperfusion injury in mice. Omics 2009; 13:513-20.
Zampetaki A, Willeit P, Tilling L, Drozdov I, Prokopi M, et al. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J Am Coll Cardiol 2012; 60:290-9
Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell. 2005, 122:6-7.
Georgi N, Taipaleenmaki H, Raiss CC, Groen N, Portalska KJ, et al. MicroRNA Levels as Prognostic Markers for the Differentiation Potential of Human Mesenchymal Stromal Cell Donors. Stem Cells Dev. 2015; 24:1946-55.
Zheng H, Zhang L, Zhao Y, Yang D, Song F, et al. Plasma miRNAs as diagnostic and prognostic biomarkers for ovarian cancer. PLoS One. 2013; 8:e77853.
Zhang H, Wang Q, Zhao Q, Di W. MiR-124 inhibits the migration and invasion of ovarian cancer cells by targeting SphK1J. Ovarian Res. 2013; 6:84.
Wang YQ, Guo RD, Guo RM, Sheng W, Yin LR. MicroRNA-182 promotes cell growth, invasion, and chemoresistance by targeting programmed cell death 4 (PDCD4) in human ovarian carcinomas J Cell Biochem. 2013; 114: 1464-73.
Madhavan D, Peng C, Wallwiener M, Zucknick M, Nees J, et al. Circulating miRNAs with prognostic value in metastatic breast cancer and for early detection of metastasis. Carcinogenesis. 2016 Jan 19.
Huang X, Yuan T, Liang M, Du M, Xia S, et al. Exosomal miR-1290 and miR-375 as prognostic markers in castration-resistant prostate cancer. Eur Urol. 2015; 67:33-41.
Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, et al. Circulating microRNAs in plasma as early detection markers for breast cancer. Int J Cancer. 2013; 132:1602-12.
Shen J, Todd NW, Zhang H, Yu L, Lingxiao X, et al. Plasma microRNAs as potential biomarkers for non-small-cell lung cancer. Lab Invest. 2011; 91:579-87.
Wang Q, Huang Z, Ni S, Xiao X, Xu Q, et al. Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One. 2012; 7:e44398.
Inoue A, Yamamoto H, Uemura M, Nishimura J, Hata T, et al. MicroRNA-29b is a Novel Prognostic Marker in Colorectal Cancer. Ann Surg Oncol. 2015;22 Suppl 3:S1410-8
Yuan J, Zheng Z, Zheng Y, Lu X, Xu L, et al. microRNA-328 is a favorable prognostic marker in human glioma via suppressing invasive and proliferative phenotypes of malignant cells. Int J Neurosci. 2016; 126:145-53.