Annals of SBV

Register      Login

VOLUME 5 , ISSUE 1 ( Jan-Jun, 2016 ) > List of Articles

Glioblastoma: evolving niches and challenges

Pooja Pratheesh

Keywords : Glioblastoma multiforme, neovascularization, hypoxia, necrosis, niche

Citation Information : Pratheesh P. Glioblastoma: evolving niches and challenges. 2016; 5 (1):52-56.

DOI: 10.5005/jp-journals-10085-5111

License: CC BY-NC 4.0

Published Online: 01-02-2020

Copyright Statement:  Copyright © 2016; The Author(s).


Glioblastoma multiforme (GBM) are one of the most refractory brain tumors characterized by aggressive invasive growth and resistance to therapy. These tumors are highly heterogeneous at the molecular and histological levels. Specific hallmarks like necrosis and microvascular proliferation distinguish GBM from lower-grade gliomas. GBMs are one of the most hypoxic as well as angiogenic tumors. GBMs consist of specific niches within the tumor microenvironment that regulates metabolic needs, tumor survival and invasion, as well as cancer stem cell (CSC) maintenance. This review features the distinct GBM niches, the functional status of the vasculature, and discusses the prospects of therapeutically targeting GBM niche constituents.

PDF Share
  1. Blasberg RG, Kobayashi T, Horowitz M, Rice JM, Groothuis D, et al. Regional blood flow in ethylnitrosourea-induced brain tumors. Ann Neurol. 1983; 14:189-201.
  2. Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, et al. Necrosis and glioblastoma: a friend or a foe? A review and a hypothesis. Neurosurgery. 2002; 51:2-12.
  3. Sundfør K, Lyng H, Rofstad EK. Tumour hypoxia and vascular density as predictors of metastasis in squamous cell carcinoma of the uterine cervix. Br J Cancer. 1998; 78:822-7.
  4. Höckel M, Schlenger K, Höckel S, Aral B, Schäffer U, et al. Tumor hypoxia in pelvic recurrences of cervical cancer. Int J Cancer. 1998; 79:365-9.
  5. Sanna K, Rofstad EK. Hypoxia-induced resistance to doxorubicin and methotrexate in human melanoma cell lines in vitro. Int J Cancer. 1994; 58:258-62.
  6. Huse JT, Phillips HS, Brennan CW. Molecular sub-classification of diffuse gliomas: seeing order in the chaos. Glia. 2011; 59:1190-9.
  7. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, et al. Cancer Genome Atlas Research Network. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell. 2010; 17:98-110
  8. Cooper LA, Gutman DA, Chisolm C, Appin C, Kong J, et al. The tumor microenvironment strongly impacts master transcriptional regulators and gene expression class of glioblastoma. Am J Pathol. 2012; 180:2108-19. 9.
  9. Brat DJ, Castellano-Sanchez AA, Hunter SB, Pecot M, Cohen C, et al. Pseudopalisades in glioblastoma are hypoxic, express extracellular matrix proteases, and are formed by an actively migrating cell population. Cancer Res. 2004; 64:920-7.
  10. Keith B, Simon MC. Hypoxia-inducible factors, stem cells, and cancer. Cell. 2007; 129:465-72.
  11. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol. 1996; 16:4604-13.
  12. Liang J, Piao Y, Holmes L, Fuller GN, Henry V, et al. Neutrophils promote the malignant glioma phenotype through S100A4. Clin Cancer Res. 2014; 20:187-98. 14.
  13. 13. Feng X, Szulzewsky F, Yerevanian A, Chen Z, Heinzmann D, et al. Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget. 2015; 6:15077-94.
  14. Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, et al. Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene. 2009; 28:3949-59.
  15. Bar EE, Lin A, Mahairaki V, Matsui W, Eberhart CG. Hypoxia increases the expression of stem-cell markers and promotes clonogenicity in glioblastoma neurospheres. Am J Pathol. 2010; 177:1491-502.
  16. Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A. 2011; 108:4274-80.
  17. Cuddapah VA, Robel S, Watkins S, Sontheimer H. A neurocentric perspective on glioma invasion. Nat Rev Neurosci. 2014;15:455-65.
  18. Westphal M, Lamszus K. The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nat Rev Neurosci. 2011; 12:495-508.
  19. Yoshida S, Shibata M, Yamamoto S, Hagihara M, Asai N, et al. Homo-oligomer formation by basigin, an immunoglobulin superfamily member, via its N-terminal immunoglobulin domain. Eur J Biochem. 2000; 267:4372-80.
  20. Deryugina EI, Soroceanu L, Strongin AY. Up-regulation of vascular endothelial growth factor by membrane-type 1 matrix metalloproteinase stimulates human glioma xenograft growth and angiogenesis. Cancer Res. 2002; 62:580-8.
  21. Choe G, Park JK, Jouben-Steele L, Kremen TJ, Liau LM, et al. Active matrix metalloproteinase 9 expression is associated with primary glioblastoma subtype. Clin Cancer Res. 2002; 8:2894-901.
  22. Du R, Petritsch C, Lu K, Liu P, Haller A, et al. Matrix metalloproteinase-2 regulates vascular patterning and growth affecting tumor cell survival and invasion in GBM. Neuro Oncol. 2008; 10254-64.
  23. Kaushik DK, Hahn JN, Yong VW. EMMPRIN, an upstream regulator of MMPs, in CNS biology. Matrix Biol. 2015; 44:138-46.
  24. Taylor PM, Woodfield RJ, Hodgkin MN, Pettitt TR, Martin A, et al. Breast cancer cell-derived EMMPRIN stimulates fibroblast MMP2 release through a phospholipase A(2) and 5-lipoxygenase catalyzed pathway. Oncogene. 2002; 21:5765-72.
  25. Sidhu SS, Mengistab AT, Tauscher AN, LaVail J, Basbaum C. The microvesicle as a vehicle for EMMPRIN in tumor-stromal interactions. Oncogene. 2004; 23:956-63.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.