Annals of SBV

Register      Login

VOLUME 5 , ISSUE 1 ( Jan-Jun, 2016 ) > List of Articles

Cancer stem cells - a brief overview

J Sam Vijay Kumar

Keywords : Cancer, Stem cells, Perpetuation, Stem cell theory, Markers

Citation Information : Sam Vijay Kumar J. Cancer stem cells - a brief overview. 2016; 5 (1):61-68.

DOI: 10.5005/jp-journals-10085-5113

License: CC BY-NC 4.0

Published Online: 01-02-2020

Copyright Statement:  Copyright © 2016; The Author(s).


Cancer is a disease where there is aberrant cellular behaviour characterized by uncontrolled growth and cellular signalling. Cancer though is viewed as a homogeneous pathology, does not show uniformity at the cellular level - there is difference in the characteristics within cells of a tumour. A major caveat in understanding the biology of cancer is the paucity of information on the origin and perpetuation of cancers. Towards salvaging these two models of cancer genesis and progression have been proposed: ‘Stochastic’ and ‘Cancer stem cell’ theories. The stochastic model holds that all cells in a tumour are identical while the cancer stem cell theory supports the existence of a subset of cells called cancer stem cells in a tumour that are responsible for the origin and perpetuation of the disease. Cancer stem cells are implicated in various aspects of cancer including metastasis, recurrence and therapeutic resistance. Though cancer stem cells have been reported from many cancers methods to identify and characterize them still rely on animal transplantation models along with surface protein studies. However better techniques of characterization of these cells would play a positive role in elucidating these cells better. The characterization of cancer stem cells would play an important role in the research and clinical management of the disease.

PDF Share
  1. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, et al. An estimation of the number of cells in the human body. Ann Hum Biol. 2013;40:463-71.
  2. Sender R FS, Milo R. Revised estimates for the number of human and bacteria cells in the body. bioRxiv. 2016;1(036103).
  3. Renehan AG, Booth C, Potten CS. What is apoptosis, and why is it important? BMJ. 2001;322:1536-8.
  4. Shay JW, Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1:72-6.
  5. Rippon HJ, Bishop AE. Embryonic stem cells. Cell Prolif. 2004;37:23-34.
  6. Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell. 2001;105:829-41.
  7. Perez-Losada J, Balmain A. Stem-cell hierarchy in skin cancer. Nat Rev Cancer. 2003;3:434-43.
  8. Preston SL, Alison MR, Forbes SJ, Direkze NC, Poulsom R, et al. The new stem cell biology: something for everyone. Mol Pathol. 2003;56:86-96.
  9. Ema H, Morita Y, Suda T. Heterogeneity and hierarchy of hematopoietic stem cells. Exp Hematol. 2014;42:74-82.
  10. Radtke F, Clevers H. Self-renewal and cancer of the gut: two sides of a coin. Science. 2005;307:1904-9.
  11. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981;292:154-6.
  12. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A. 1981;78:7634-8.
  13. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003-7.
  14. Van der Flier LG, Clevers H. Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol. 2009;71:241-60.
  15. Li H, Jasper H. Gastrointestinal stem cells in health and disease: from flies to humans. Dis Model Mech. 2016;9:487-99.
  16. Gunsilius E, Gastl G, Petzer AL. Hematopoietic stem cells. Biomed Pharmacother. 2001;55:186-94.
  17. Goldring K, Partridge T, Watt D. Muscle stem cells. J Pathol. 2002;197:457-67.
  18. Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J. 2012;31:2685-96.
  19. Plesa A, Chelghoum Y, Mattei E, Labussiere H, Elhamri M, et al. Mobilization of CD34(+)CD38(-) hematopoietic stem cells after priming in acute myeloid leukemia. World J Stem Cells. 2013;5:196-204.
  20. Schuurhuis GJ, Meel MH, Wouters F, Min LA, Terwijn M, et al. Normal Hematopoietic Stem Cells within the AML Bone Marrow Have a Distinct and Higher ALDH Activity Level than Co-Existing Leukemic Stem Cells. PLoS One. 2013;8:e78897.
  21. Available from Accessed on 05-May-2016.
  22. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225-49.
  23. Marimuthu P. Projection of cancer incidence in five cities and cancer mortality in India. Ind J Cancer. 2008;45:4-7.
  24. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57-70.
  25. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646-74.
  26. Pavlova NN, Thompson CB. The emerging hallmarks of cancer mtabolism. Cell Metab. 2016;23:27-47.
  27. Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO reports. 2014;15:1243-53.
  28. Sonnenschein C, Soto AM. The aging of the 2000 and 2011 Hallmarks of Cancer reviews: a critique. J Biosci. 2013;38:651-63.
  29. Jordan CT, Guzman ML, Noble M. Cancer stem cells. N Engl J Med. 2006;355:1253-61.
  30. Marjanovic ND, Weinberg RA, Chaffer CL. Cell plasticity and heterogeneity in cancer. Clin Chem. 2013;59:168-79.
  31. Matsuda S, Yan T, Mizutani A, Sota T, Hiramoto Y, et al. Cancer stem cells maintain a hierarchy of differentiation by creating their niche. Int J Cancer. 2014;135:27-36
  32. Werner B, Scott JG, Sottoriva A, Anderson AR, Traulsen A, et al. The cancer stem cell fraction in hierarchically Organized tumors can be estimated using mathematical modeling and patient-specific treatment trajectories. Cancer Res. 2016;76:1705-13.
  33. Nguyen LV, Vanner R, Dirks P, Eaves CJ. Cancer stem cells: an evolving concept. Nat Rev Cancer. 2012;12:133-43.
  34. Tysnes BB. Tumor-initiating and -propagating cells: cells that we would like to identify and control. Neoplasia. 2010;12:506-15.
  35. Gurchot C. The trophoblast theory of cancer (John Beard, 1857-1924) revisited. Oncology. 1975;31:310-33.
  36. Moss RW. The life and times of John Beard, DSc (1858-1924). Integr Cancer Ther. 2008;7:229-51.
  37. Dean M. Cancer stem cells: redefining the paradigm of cancer treatment strategies. Mol Interv. 2006;6:140-8.
  38. Costea DE, Tsinkalovsky O, Vintermyr OK, Johannessen AC, Mackenzie IC. Cancer stem cells - new and potentially important targets for the therapy of oral squamous cell carcinoma. Oral Dis. 2006;12:443-54.
  39. Lin EH, Jiang Y, Deng Y, Lapsiwala R, Lin T, et al. Cancer stem cells, endothelial progenitors, and mesenchymal stem cells: “seed and soil” theory revisited. Gastrointest Cancer Res. 2008;2:169-74.
  40. Furth J, Kahn MC, Breedis C. The transmission of leukemia of mice with a single cell. American J Cancer. 1937;31:276-82.
  41. Makino S. Further evidence favoring the concept of the stem cell in ascites tumors of rats. Ann N Y Acad Sci. 1956;63:818-30.
  42. Hewitt HB. Studies of the quantitative transplantation of mouse sarcoma. Br J Cancer. 1953;7:367-83.
  43. Carney DN, Gazdar AF, Bunn PA, Jr., Guccion JG. Demonstration of the stem cell nature of clonogenic tumor cells from lung cancer patients. Stem Cells. 1982;1:149-64.
  44. Martin PJ, Najfeld V, Hansen JA, Penfold GK, Jacobson RJ, et al. Involvement of the B-lymphoid system in chronic myelogenous leukaemia. Nature. 1980;287:49-50.
  45. Greaves MF, Verbi W, Reeves BR, Hoffbrand AV, Drysdale HC, et al. “Pre-B” phenotypes in blast crisis of Ph1 positive CML: evidence for a pluripotential stem cell “target”. Leuk Res. 1979;3:181-91.
  46. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367:645-8.
  47. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100:3983-8.
  48. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67:1030-7.
  49. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445:106-10.
  50. Saigusa S, Inoue Y, Tanaka K, Toiyama Y, Matsushita K, et al. Clinical significance of LGR5 and CD44 expression in locally advanced rectal cancer after preoperative chemoradiotherapy. Int J Oncol. 2012;41:1643-52.
  51. Vermeulen L, Todaro M, de Sousa Mello F, Sprick MR, Kemper K, et al. Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity. Proc Natl Acad Sci U S A. 2008;105:13427-32.
  52. Kemper K, Prasetyanti PR, De Lau W, Rodermond H, Clevers H, et al. Monoclonal antibodies against Lgr5 identify human colorectal cancer stem cells. Stem Cells. 2012;30:2378-86.
  53. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, et al. CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell. 2014;14:342-56.
  54. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65:10946-51.
  55. Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111-5.
  56. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104:10158-63.
  57. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature Med. 1997;3:730-7.
  58. Suetsugu A, Nagaki M, Aoki H, Motohashi T, Kunisada T, et al. Characterization of CD133+ hepatocellular carcinoma cells as cancer stem/progenitor cells. Biochem Biophys Res Commun. 2006;351:820-4.
  59. Li C, Lee CJ, Simeone DM. Identification of human pancreatic cancer stem cells. Methods Mol Biol. 2009;568:161-73.
  60. Lawson DA, Xin L, Lukacs R, Xu Q, Cheng D, et al. Prostate stem cells and prostate cancer. Cold Spring Harb Symp Quant Biol. 2005;70:187-96.
  61. Bruno S, Bussolati B, Grange C, Collino F, Graziano ME, et al. CD133+ renal progenitor cells contribute to tumor angiogenesis. Am J Pathol. 2006;169:2223-35.
  62. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14:329-40.
  63. Passegue E, Wagers AJ. Regulating quiescence: new insights into hematopoietic stem cell biology. Dev Cell. 2006;10:415-7.
  64. Glauche I, Moore K, Thielecke L, Horn K, Loeffler M, et al. Stem cell proliferation and quiescence--two sides of the same coin. PLoS Comput Biol. 2009;5:e1000447.
  65. Mahnke YD, Roederer M. Optimizing a Multicolor Immunophenotyping Assay. Clin Lab Med. 2007;27:469-85.
  66. Brown M, Wittwer C. Flow Cytometry: Principles and Clinical Applications in Hematology. Clin Chem. 2000;46:1221-9.
  67. Dalley AJ, Abdul Majeed AA, Upton Z, Farah CS. Organotypic culture of normal, dysplastic and squamous cell carcinoma-derived oral cell lines reveals loss of spatial regulation of CD44 and p75 NTR in malignancy. J Oral Pathol Med.42:37-46.
  68. Ernst A, Aigner M, Nakata S, Engel F, Schlotter M, et al. A gene signature distinguishing CD133hi from CD133- colorectal cancer cells: essential role for EGR1 and downstream factors. Pathology.43:220-7.
  69. Lichtman JW, Conchello J-A. Fluorescence microscopy. Nat Meth. 2005;2:910-9.
  70. Chiou SH, Yu CC, Huang CY, Lin SC, Liu CJ, et al. Positive correlations of Oct-4 and Nanog in oral cancer stem-like cells and high-grade oral squamous cell carcinoma. Clin Cancer Res. 2008;14:4085-95.
  71. Goodell MA, McKinney-Freeman S, Camargo FD. Isolation and characterization of side population cells. Methods Mol Biol. 2005;290:343-52.
  72. Visvader JE, Lindeman GJ. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer. 2008;8:755-68.
  73. Pedersen EA, Shiozawa Y, Mishra A, Taichman RS. Structure and function of the solid tumor niche. Front Biosci (Schol Ed). 2011;4:1-15.
  74. Fuchs E, Horsley V. Ferreting out stem cells from their niches. Nat Cell Biol. 2011;13:513-8.
  75. Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CHM, Jones DL, et al. Cancer Stem Cells - Perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res. 2006;66:9339-44.
  76. Beckhove P, Schutz F, Diel IJ, Solomayer EF, Bastert G, et al. Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. Int J Cancer. 2003;105:444-53.
  77. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, et al. Efficient tumour formation by single human melanoma cells. Nature. 2008;456:593-8.
PDF Share
PDF Share

© Jaypee Brothers Medical Publishers (P) LTD.