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Abstract   Successful completion of the Human Genome Project gave the hope for development of 
novel therapeutics, diagnostics for the welfare of humankind. Individual genetic studies 
and genome wide association studies revealed the genetic risk factors for various 
diseases which can be used in predetermination. This eventually led to the growth of 
pharmacogenomics that confers individual drug dosage adjustment preventing from 
adverse effects. However, it addresses only the hitches raised by the underlying genetic 
sequence but not external factors that influences the genotypic and phenotypic expression. 
Epigenetic research deals with these factors and studies the modifications caused along 
with their phenotype. These modifications are reversible which can be used as target for 
therapeutics, thus improving the treatment strategies of various diseases. In this review, 
we attempt to discuss the use of epigenetic modifications as drug targets and their 
mechanism of action.
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Introduction

 For the past two decades, genomics was ruling the 
medical research, deciphering disease pathophysiology, risk 
factors, prognostic strategies and much more. But still, it could 
not answer several questions raised by the research community 
like the influence of environmental stress in differential 
gene expression. This eventually led to the development of 
“Epigenetics”, which explains the genetic behavior apart from 
underlying nucleotide sequence. By definition, epigenetics is 
the study of factors (chemicals, proteins, environmental stress, 
etc.) that influence differential gene expression in cells without 
changing the nucleotide sequence.

The journey of epigenetics started less than a century 
before, when C. H. Waddington coined the term in 19421. 

Epigenetics always answers a scientific question in three 
different contexts, DNA methylation, histone modifications 
and influence of micro RNA (miRNA). A simple example for 
epigenetic changes is the process of cellular differentiation 
in a eukaryotic system2. Epigenetics was found to play 
important roles in disease pathogenesis3, drug resistance4 
and prognosis/diagnosis5. Apart from the somatic heritable 
nature of epigenetic changes, the property that motivate 
researchers is that these changes are reversible, which led 
to the development of novel therapeutics 6.

The use of any drug or factors that influence epigenetic 
changes and benefits the medical treatment is broadly known 
as “Epigenetic therapy”. In a similar definition, the drugs 
that alters or reverses the underlying epigenetic changes in 
a diseased conditions are also included in epigenetic therapy. 
In this review, we attempt to discuss the research conducted 
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so far, on therapeutic epigenetics, which may have an impact 
on future medical treatment strategies. 

Epigenetics in diseases

 One of the epigenetic mechanism, DNA methylation, 
which was extensively studied, was found to be associated 
with several diseases such as Rett syndrome7, diabetes8, 
cancer9 and systemic lupus erythematosus10. In most of 
the diseases, hypomethylation of CpG islands in promoter 
region of specific genes and decreased DNMT1 (DNA 
methyl transferase 1), DNMT3B (DNA methyl transferase) 
expression were observed11.

 Methylation and acetylation are the two important 
modifications that histones undergo, that led differential 
gene expression. Histone Acetyl Transferase (HATs) 
and Histone Deacetylases (HDACs) are involved in 
histone acetylation, whereas Histone Methyl Transferases 
(HMTs) and Histone Demethylases (HDMs) influences 
histone methylation12. Acetylation of histones was found 
to be associated with diseases such as Rubinstein-Taybi 
syndrome13, asthma14, cancer15 and diabetes8. On the other 
hand, histone methylation was also significantly associated 
with Sotos syndrome16, Huntington’s disease13 and cancer15.

 The third epigenetic mechanism, miRNA, influences 
differential gene expression through complementary binding 
with coding messenger RNA (mRNA) and subsequent 
deactivation with the help of Dicer protein and other associated 
proteins17. miRNAs like miR-10118, miR-14319, miR-2920 
had decreased expression levels in cancer, whereas expression 
levels of miR-2121 and miR-15522 are found to be increased. 
The association of miRNA levels was also studied in relation 
with diabetic conditions (both type I and type II), wherein 
miR-14423, miR-146a24, miR-2925 and miR-27a26 are widely 
demonstrated with promising results.

Pharmacoepigenomics

 The successful discoveries made through 
pharmacogenomics pooled polymorphic allelic data 
associated with drug response and efficacy under various 
diseased conditions. For example, cardiovascular patients 
with CYP2C19 mutant variants should undergo clopidogrel 
dose adjustment to get therapeutic effect or to avoid adverse 
effects27. Pharmacoepigenomics emerged as an idea to 
advance the further understanding of drug response and 
efficacy through in depth molecular analysis, in the early 
1990s.

Pharmacoepigenomics is the study of epigenetic 
alterations and the factors involved, in relation with drug 

response in any diseased condition. The first identified 
pharmacoepigenomic phenomenon was methylation changes 
in the drug metabolizing enzyme, CYP2E1, in relation to 
birth28. Only in the last decade, it was found that tobacco 
consumption regulates the methylation levels of CYP1A1 
gene promoter29. Eventually, several researchers studied 
the influence of epigenetic changes in drug response in 
various disease, especially cancer30. Recently, promoter 
hypomethylation in IGFBP3 was found to be associated 
with cisplatin response in non-small-cell-lung cancer31. 

 Pharmacoepigenomics is also used to predict the 
outcomes after a chemotherapy. The outcomes of patients with 
early stage breast cancer after adjuvant tamoxifen therapy 
can be assessed through PITX2 promoter methylation32. 
Low recurrence rates of bladder cancer was associated with 
CDKN2A hypermethylation after interleukin-2 therapy33. 
In whole, pharmacoepigenomics can also be applied in 
the development of novel diagnostic/prognostic markers, 
predictive markers and therapeutic targets, eventually 
improving the treatment strategies34.

DNA methylation as therapeutic target

 Global methylation studies showed that DNA 
methylation (both hyper- and hypo-) have significant roles 
in disease pathogenesis, progression and outcomes. The most 
widely studied disease in relation with DNA methylation is 
cancer. Earlier it was suspected that DNA hypomethylation 
is the only phenomenon occurring in carcinogenesis35, but 
later it was understood that both hypermethylation and 
hypomethylation of specific genes influences the disease 
pathophysiology36. DNA methylation can be targeted using 
enzyme inhibitors like 5-azacytdine that binds to DNMTs 
and prevent further methylation during replication37.

5-Azacytidine (Vidaza) and its deoxy analogue, 5-aza-2’-
deoxycytidine (Dacogen) were approved by the US Food 
and Drug Administration for the treatment of MDS38,39. 
Treatment with 5-azacytidine improved the survival rate of 
MDS patients up to 20%40. It was also studied in patients 
with acute myeloid leukemia (AML), whereas the deoxy 
analogue was studied in chronic myelomonocytic leukemia 
(CMML) patients41,42.

A recent epigenome wide association study by Ronn et al. 
revealed altered DNA methylation levels in type 2 diabetes. 
Some of the genes that are differentially methylated include 
TCF7L2, IRS1, PPARG and THADA, involved in pathways 
of cancer, MAPK signaling and axon guidance43.

 DNA methylation can also be used as potential 
therapeutic targets in infectious diseases. In our recent study, 

significant difference in global methylation was found in 
newborns with sepsis when compared to non-septic babies44. 
Epigenome wide association studies revealed protocadherin 
beta gene hypermethylation which was correlated with 
decreased leukocyte adhesion, a physiological process of 
neonatal sepsis45,46.

 These epigenetic changes can be targeted with novel 
drugs, reversing to the original state. For example, curcumin, 
the natural and edible pigment present in Curcuma longa 
(turmeric) and genistein, another phytochemical compound, 
showed reversal of hypermethylation of RARβ2 promoter in 
cervical cancer cell lines47. In a mouse model of Alzheimer’s 
disease (AD), the methylating agent, Betaine, was found to 
improve memory48.

Histone modifications as epigenetic 
target

The histone modifications like acetylation and methylation 
can be reversed by using appropriate enzyme inhibitors. 
HDAC inhibitors (HDACi) such as Phenylbutyrate and 
Suberoylanilide hydroxamic acid (SAHA) were used in MDS 
and AML, improving the hematological parameters49,50. 

Valproic acid (HDACi) was found to be useful in the 
treatment epilepsy, bipolar disorder51, cancer52 and AD53. 
Ricobaraza et al., showed that sodium phenylbutyrate 
improved memory in AD mouse model54. The well-known 
class III HDACs, also known as Sirtuins (SIRTs), play a role 
as epigenetic targets in AD and cancer55.

Inhibition of HAT p300 using C646was found to reduce the 
acetylated and phosphorylated tau protein levels, in vitro56. 
Curcumin also showed HAT inhibiting activity in AD57.

MicroRNA as epigenetic target

 RNA therapeutics targeting the non-coding region of 
amyloid β precursor protein using erythromycin antibiotic, 
paroxetine antidepressant and N-acetyl cysteine was found 
to reduce extracellular amyloid β in AD mouse model58. 

Limitation of therapeutic epigenetics

The target of epigenetic therapy are the genes and pathways 
affected by the epigenetics mechanisms which triggers a 
caution of non-specificity. If one attempts to reverse the 
methylation pattern of a silenced gene (hypermethylated) 
through some drugs, it may non-specifically effect on other 
silenced genes like oncogenes. Hence there is an urge to 
develop technology for gene specific targets for therapeutic 
epigenetics.

Conclusion

 With the extensive bench side knowledge developed 
through genomic and epigenetic research on disease 
pathogenesis and progression, its time to implement them 
bed-side. Development of novel genetic and epigenetic 
therapeutics will pave betterment of medical treatment 
strategies.
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Abstract   Understanding the nature of memory storage is one of the holy grails of modern 
neuroscience. It has long been recognized that memory storage would involve structural 
changes in the brain. The development of fluorescence labeling and in vivo imaging 
techniques have shed unprecedented light on how sub-cellular structures in the brain are 
modified in an experience dependent manner. Here, I review some of the recent findings 
on the nature of memory traces in the mammalian brain.

 Key Words:  Memory, Neuroscience, Synaptic imaging, Synapse.
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Introduction

The ability to remember and adapt to the environment is 
critical for survival. A part of this ability comes from the 
genetic and epigenetic information that we inherit. They 
reflect “memories” of our ancestors’ past that provided them 
with a survival advantage. The brain provides an additional 
substrate to store relatively more “real time” information 
that is relevant to an individual’s experience. Information 
in the brain is stored in interconnected population of 
neurons. Within this network of neurons, the ability or the 
strength of individual connections (synapses) to influence 
the activity of the connected neurons varies widely. During 
a novel experience, the new information can be stored by 
changing either the pattern of synaptic connectivity between 
neurons or the strength of existing synapses (Figure 1)1. 
Donald Hebb’s cell assembly theory provides a framework 
for understanding how neuronal activity can shape synaptic 
connectivity patterns or strengths. He posited that synapses 
are selectively strengthened between neurons that are 
coactive in response to the encoded information2. The 
“Hebbian” school of thought has arguably been the most 

important guiding framework for much of the neuroscience 
research on information storage in the brain. In this review, 
I focus on the recent progress, enabled by in vivo imaging, 
in our understanding of experience dependent changes on 
synaptic plasticity and its relevance to information storage 
in the mammalian brain.  Experience plays a profound role 
in sculpting neuronal connectivity during development. In 
the developing mammalian brain, Hubel and co-workers 
elegantly demonstrated how visual experience modifies the 
structural and functional properties of the visual cortex. 
They found that, in the feline and primate binocular visual 
cortices, neurons are selectively activated by inputs to one 
eye or the other. Neurons that are responsive to each eye are 
organized as alternating columns, also referred to as ocular 
dominance columns3,4. When one of the eyes was deprived 
of visual experience by suturing the eye-lid (monocular 
deprivation or MD) for several weeks, the neurons that 
previously responded to inputs to this eye switched their 
response to the open eye inputs3. To test if such experience 
dependent functional alteration is accompanied by structural 
changes, Hubel and co-workers injected a radiolabeled 
amino acid tracer in one of the eyes of the animals and 
subsequently, performed autoradiograms of the tangentially 
sectioned visual cortex. 


	27
	028
	29
	030

